Detecting and Identifying System Changes in the
Cloud via Discovery by Example

Hao Chen*, Sastry S. Durif, Vasanth Balaf, Nilton T. Bilaf, Canturk Isci’ and Ayse K. Coskun*
*Department of Electrical and Computer Engineering
Boston University, Boston, MA, 02215
TIBM T J Watson Research Center, 1101 Kitchawan Rd., Yorktown Heights, NY, 10598

Abstract—Discovering and identifying system changes caused
by events such as software installation and updates, configuration
changes, and security patches are important functionalities for
change management, security, compliance and problem diagnosis
in emerging cloud platforms. Currently, most discovery tools
use manually written rules, which require specific knowledge of
software and systems. Approaches based on manually written
rules are often fragile and require constant maintenance in this
era of continuous integration. In this paper, we propose a novel
“discovery by example” approach to autonomously search for
and identify system changes. Our approach learns characteristic
features of system changes automatically, without requiring any
explicit rule definitions or specific knowledge of the underlying
software or systems. In this approach, given a system change,
our method searches a repository that contains previous stored
system changes and returns those that are similar to it. We further
explore the use of various forms of “fingerprints” to represent
system changes efficiently and faithfully in a compact manner.
We propose and evaluate two types of fingerprints: the ‘“base-
name fingerprint” and the “1-D histogram fingerprint”. We show
that both fingerprints exhibit different efficiency and accuracy
trade-offs, and they can be effectively employed in different use
cases. We evaluate the performance of our approach with both
techniques and further present an application of it in system
real-time streaming monitoring.

I. INTRODUCTION

A typical data center hosts thousands of virtual machine
(VM) instances. These instances evolve from the time they
are booted. Sometimes, two instances booted from the same
image evolve so differently that a software update to the first
instance completes successfully but fails on the second one.
What are the differences between these instances? How many
other instances in the data center are similar to the second one?
To answer above questions, today, we write custom scripts and
execute them on the individual system to find the changes made
to the system since it is booted. The sources of system changes
include software installation, update, system reconfiguration
and process execution, etc. Software installation is the most
significant one among them.

To discover software installed in a system, state-
of-the-art techniques use rules to check for the exis-
tence of certain files and their attributes. Some rules can
be simple. For example, if there exists a file named
SIGFILESDK X A64_500500.5Y S2 and its size is 100KB,
it means that there is a software called /BM SDK 5.0 for the
system Linux AMD/EMT 64. While other rules, particularly,
those that determine whether a given software fix is applicable
to a given system [1], could be quite complex and involve
dozens of conditions to be checked.

Discovery rules, however, often fail. Consider the following
use case. Suppose on our Linux machine we have the software
package IBM SDK 5.0 for the system Linux AMD/EMT 64. If
we consult National Vulnerability Database (NVD) [2], we
would find a vulnerability alert, CVE-2012-4821, against the
version of IBM Java in this software package. There is a fix
available for this vulnerability that requires us to install JDK.
After the fix is installed, we find that the fix does not change
the file SIGFILESDK X A64_500500.5Y 52 (which is used
as a rule to discover the software IBM SDK 5.0) in any
manner. For this reason, the simple rule described above fails
to distinguish whether the system contains a vulnerable version
or a fixed version of the IBM SDK 5.0.

In general, there are three major shortcomings of a rule-
based discovery approach. First, it is fragile and highly sys-
tem/software dependent. Take the software installation discov-
ery as an example. All the rule-based systems require rules
to be renewed when the software is updated or a fixpack is
released. While this is doable, it is very inefficient, or even
not practical, as the development of the fix and the writing
of discovery rules are typically handled by different entities.
Second, the rule-based discovery has poor usability. One has
to learn a new rule language and be familiar with specific
software components, in order to write good discovery rules.
Third, the rule-based discovery approach is not suitable for
unknown system changes. Before designing rules to discover
a specific system change, the attributes of that system change
should be first studied, which typically involves large amount
of labor and time. Today, software and updates are released
multiple times a week, and systems in cloud are changed nearly
every minute. It has been impractical to evolve rules at such
a rapid pace.

On the other hand, to identify differences between VM
instances, or to search for specific system changes across
a number of VMs, it is necessary to keep track of system
evolution periodically. With thousands of systems in the cloud
running at any given time, a quarter million features per system
on average, and with hourly snapshots of the system, the size
of the repository needed to keep track of all the changes is
tremendous and approaches big data proportions. As most
traditional techniques fail rapidly in dealing with such a large
amount of data, novel big data solutions are required urgently.

In this paper, we present a novel method, the discovery by
example, which eliminates the need to manually write rules
for discovering systems, changes, or software components
in the cloud. Our method learns characteristic features of a
system change through a set of its examples automatically. To

collect the example, we compute the differences in system
state before and after the system change happens. These
recorded differences of the system state are further processed
to produce a fingerprint, a compact representation that includes
only features relevant for discovery, such as file base-names,
using feature extraction techniques. We propose two types of
fingerprints: the base-name fingerprint and the 1-D histogram

fingerprint.

While we specifically experiment with the state changes
caused by software installation in this paper, our method is
applicable to identification of arbitrary system changes. The
ability to work with arbitrary changes is useful for detecting
drifts in systems (that may be signs of vulnerability or ineffi-
ciency) by periodically scanning systems and computing their
state differences. Experimental results show that our fingerprint
based discovery by example method (a) is distortion resistant
and not affected by the noise in the system change; (b) is fast,
storage efficient and highly scalable, which is significant in the
big data context; (c) can learn incrementally as more examples
are provided, and does not require knowledge of file / system
specifics or manual updates.

The rest of this paper starts with an overview of “learning
by example” techniques, and the state-of-the-art techniques
of system discovery. Section III describes the main idea and
structure of our proposed “discovery by example” approach.
Section IV introduces two types of fingerprints and their usages
in “discovery by example”. Section V first evaluates the results
of “discovery by example” with two proposed fingerprints, and
then introduces a case study of applying the approach in the
real-time streaming system monitoring. Section VI concludes
the paper and discusses the future work.

II. RELATED WORK

Discovery by example technique is widely used in the mul-
timedia data analysis domain, such as voice recognition [12],
face and object recognition ([6], [18]), image and audio
search [14], etc. Shazam [17] is a music search service that
allows users to search for music using audio samples. Both
Picasa [16] and Google image search [5] allow users to search
for photos that are similar to a given photo. Amazon Flow [10]
discovers products utilizing object recognition techniques.

Today’s system and software discovery techniques are
mostly rule-based. Open Source Software (OSS) Discovery [3]
is an open source tool that scans machines to identify any
open source components installed on that system by either
consulting registry in a system or checking for existence
of files with specified properties. OpenlOC [4] is an open
framework for sharing threat information. It uses elaborate
rules to examine registry, file contents and metadata to de-
termine whether a security vulnerability exists. BigFix [1] is a
commercial offering that uses rules to scan systems and apply
fixes automatically.

Some recent work investigates solving system problems
using examples. In system performance monitoring, a “finger-
print”, or a “signature”, which is constructed by the statisti-
cal selection and summarization of hundreds of performance
metrics, is used to represent the system state for automatic
classification and identification of performance crises ([7], [8]).

Some changes: e.g.,

mTomcat installed
crawl @ @ crawl
Frame Frame
(t,) (t,)
diff

Change Set:
“Tomcat Installed”

Fig. 1. The process of change set creation.

Redstone et al. [13] propose to build an automated problem di-
agnosis system that collects problem symptoms, automatically
searches databases of problem symptoms and fixes, and also
allows ordinary users to contribute accurate problem reports in
a structured manner. They propose the idea, however, without
introducing specific design or evaluating performance in their
work. Minersoft [9] scans of a collection of systems’ file
contents and metadata to build an inverted index, which can
be used by users to find systems containing given software.
Satyanarayanan et al. [15] examines the opportunities and
challenges in interactively searching VM images in cloud
environment and presents early evidence of its feasibility, by
leveraging the early discard method [11].

To the best of our knowledge, our work is the first to design
and apply a “discovery by example” approach in detecting
and identifying system changes in the cloud context. We
also design two novel fingerprints to represent the system
changes in a condensed and efficient way. In addition, we
propose a filter cascade structure applied with our “discovery
by example” approach. Finally, a case study of leveraging
“discovery by example” approach in the real-time streaming
monitoring is described in this work.

III. OUR APPROACH

The goal of our approach is to solve the following prob-
lems: (a) Given a change in the system state of an instance,
detect similar system changes on the other instances in the
cloud; (b) Identify unknown system changes using previously
labeled system changes in the repository.

A system’s state changes on a continuous basis. Some of
the changes arise from clearly defined events such as software
installation, application of security patches and configuration
changes, while others are an artifact of system operation such
as logs and system events. For the rest of the paper, we focus
on system changes caused by software installation. Note that,
however, the proposed method is applicable to a variety of
state changes.

Our approach first records the system change as a change
set, which contains all details of that state change. For dis-
covery purposes, we find that a more compact representation,
i.e., a fingerprint, that is extracted from a change set, is more

os: {
type: 'RHEL linux’, distro: 'Red Hat', version: '4.2", ipaddr: '9.25.34.1", hostname: 'vm23.rescloud.ibm.com’,

N mount-points: { '/dev/vdal': 'ext3’,'/dev/vda2": 'ext4'}, ...

file: {
‘/etc/hosts' : { permission: rw-r-—', size: 236, user: 'root’, group: 'wheel'},
... < one entry per file in the file system > ...

).
package: {
tomcat6 : { version: '6.0.2', vendor: ‘Apache’, arch: 'xB6_64'},
..< one entry per installed package >

process: {
‘httpd': { pid: 23, exec: ‘/opt/apache/httpd’, ports: [8080], open-files: [/var/log/httpd/httpd.log, .1},
.. < one entry per running process >

config: {
‘/var/tomcat/web.xml' : {
< contents of config file can also TSON-encoded. e.g.>
c : { sslEnabled: true, m ize: 2MB, port: 8080, URIEncoding: ISO-8859-1}

}

... < one entry per config file (client-specified list) >

Fig. 2. An example of the system state recorded in a frame.

useful and efficient. The fingerprint design is presented in
detail in Section IV. Then the fingerprint is labeled by the
event that causes the state change and stored in a repository.
To solve problem (a), a designed filter cascade is applied on
the fingerprint repository and splits the repository into two
sets: the candidate set and the discard set. Fingerprints in the
candidate set are considered similar to the given one. These
fingerprints can be further used to solve problem (b).

Next, we describe the process used to capture change sets.
After that, we introduce the concept of the fingerprint, and
discuss how it is used in early discard, a technique we use to
cascade the discovery process over a set of filters.

We use the following concepts in our discussion of the
“discovery by example’:

System State consists of persistent state information such
as configuration, disk, files, OS, and dynamic state such as
processes, network connections.

Frame is a JSON representation of system state represented as
a collection of following features: configuration, connection,
disk, file, package, and process.

Feature is a JSON dictionary representing attributes of state
entities. A file feature, for example, consists of the following
attributes for a single file: path, name, size, access time,
modification time, permissions, ownership, and type.

Change Set is the difference between two frames from the same
system and contains following sections: additions, deletions,
modifications, and common.

A. Change Set Creation

Figure 1 shows the process of creating a change set. In the
example shown, system change is caused by installing Tomcat
server. First, the state of the system is collected into a frame
frame;. Then Tomcat is installed. Once the installation is
complete, the system state is again collected into a new frame
frames. Figure 2 shows an example of the frame. Then the
difference of two frames, frames - frame;, is computed:

(1) If a feature is in frames and not in frame;, then it is
added to additions;

(2) If a feature is in both frames, but their attributes differ,
then it is added to modification;

(3) If a feature is in both frames, and attributes match, then it
is added to common,;

Tomcat Installed

Hadoop Installed

MangoDB Installed

Instance Fingerprint 1
Instance Fingerprint 2

Instance Fingerprint N

4

Family Fingerprint

Httpd Installed

Repository

Fig. 3. The structure of the repository. Multiple instance fingerprints of
the same event are grouped together as a family, and a family fingerprint is
generated from instance fingerprints in the family for each event. The family
fingerprint is used to represent the event and distinguish the event from others.

Early Discard

2nd Level Discard

Last Level
Discard

Final
Results

Fig. 4. The filter cascade of the “discovery by example” approach.

(4) If a feature is not in frames but is in frames, then it is
added to deletions.

We use the yum utility to install software in this work!,
which automatically resolves dependencies for installing soft-
ware. For this reason, the resulting change set includes files
from different sources: Tomcat server files, files modified
during installation (e.g., /etc/passwd by adding Tomcat users),
temporary files created during installation, files belonging to
software installed to satisfy dependency requirements, yum
repository file updates, files created and modified by other
activities not related to Tomcat installation, etc. Therefore,
for a given Tomcat version on a specific system environment,
the file features contributed by the Tomcat server remain the
same. However, the file features in the change set vary from
installation to installation depending on what other dependent
software is installed by the yum utility and what other parallel
activities are going on during the installation process.

B. Fingerprint

Directly utilizing the change set for discovery is not a good
choice due to the fact that a change set is a complete record
of raw system changes. Thus, it contains information that is
very specific to that system, and includes a lot of information
that is not relevant for discovery purposes. Moreover, as the
size of the change set is usually large, using the change set for
discovery leads to low discovery speed and high storage costs.
Therefore, we extract a subset of features and their attributes

'Our approach can also work with software installed through other methods.
It is not limited to yum.

from a change set into a highly condensed instance fingerprint.
From a given change set, one could create many different types
of instance fingerprints by choosing different combinations of
features and their attributes. In Section IV, different ways of
generating instance fingerprints are presented.

All fingerprints are stored in a repository. A typical repos-
itory contains many change sets for a single system change
event such as installing a Tomcat server. We group all the
change sets of an event together as a family, and label the
family by the name of event, such as “Tomcat Installation”.
Similar to change sets, instance fingerprints are grouped into
families as well. Then we generate a family fingerprint for each
family based on all the instance fingerprints in it. Depending
on different algorithms used, a family fingerprint can be simply
a set of all the instance fingerprints, or a collection of support
vectors, parameters or decision rules trained from instance
fingerprints. In this evaluation, a family fingerprint is simply
represented as a set of all its instance fingerprints. Figure 3
shows the structure of the repository.

The repository is automatically maintained and updated
in some fixed periods, e.g., in mid-night everyday, while the
newly queried samples in that day are added as the training
data for updates. In addition, an interface is also designed for
maintainers to manually update the repository if necessary.

C. Framework of Discovery and Early Discard

We use a cascade of filters for discovery. Figure 4 shows
the general idea behind this approach. A filter at the topmost
layer is called as the early discard filter, which filters out as
many dissimilar candidates as possible using simple and fast
computations while guaranteeing to achieve a fairly low rate of
incorrectly discarding the matching candidates. Candidates that
pass through the early discard filter are sent to the following
layers for further processing until either they are discarded or
they pass through all the layers and are included in the final
results.

To illustrate how filter cascade is used in our approach, we
take an uncategorized change set C' as an example. Without
loss of generality, let us assume that the filter cascade consists
of only two layers, i.e., the first filter, or the early discard
filter, and the second filter. We extract two types of instance
fingerprints from the change set, i.e. type;, and types for each
filter layer, respectively. The process of finding change sets
in the cloud that are similar to C' and identifying C is as
follows: The first filter examines the type; fingerprints for
all the change sets in the repository. If a change set has
a type; fingerprint that is considered similar to the type;
fingerprint of C, then the change set is sent to the second filter.
The second filter computes the similarity measure between
types fingerprints of those candidates sent to it and the types
fingerprint of C, and outputs those change sets that meet the
similarity criterion. Note that each layer could use its own
similarity criteria. The output after the second filter can then
be used to identify C. For example, if the output contains
“Tomcat Installation”, then we recognize that C' might be a
change set of Tomcat installation on an instance.

A well designed fingerprint can improve both the accuracy
and efficiency of the discovery significantly. For example,
merely using the size of the change set as the fingerprint,

while being simple and fast, does not identify change sets that
vary due to the “noise”, e.g., background running processes
that are unrelated to the application installation. Hence, such
a fingerprint is not noise resistant and robust, and will filter
out matching candidates with a fairly high probability. In
this work, we focus on designing and analyzing efficient
fingerprints for the early discard filter. We also introduce ideas
of designing good fingerprints for layers after early discard in
Section VI.

IV. FINGERPRINT DESIGN AND DISCOVERY
PROCESS

Designing a concise fingerprint that is also capable of
capturing the essence of the change set is important for
discovery, and especially for the early discard, which requires
high processing efficiency. There are many ways of creating
such fingerprints depending on what features and attributes
in the change sets are used and how they are represented.
In this section, we first introduce two types of instance
fingerprints, which have more compact representations than
the corresponding change set. Then we present how these
fingerprints are used to solve the problems proposed at the
beginning of Section III.

A. Base-name Instance Fingerprint

The first type of instance fingerprint is called the base-
name instance fingerprint and is a list of the base-names” of
all added and modified file features in a change set. Using only
the base-names of the files in a change set enables us to detect
the change set no matter where in the system the corresponding
files exist. Experiments show that base-name instance finger-
print has a strong representative and distinguishable capacity
among different system changes. Overall, base-name instance
fingerprint is distinguishable, compact and distortion resistant,
thus is suitable for early discard discovery.

For a base-name instance fingerprint f°, we define its
length Lfbn, as the number of the base-names in the fin-
gerprint. Then for any two base-name instance fingerprints,

b and f&", the similarity score (v, a) between them is
defined as the ratio of the number of common base-names
in f{’” and fb”, i.e., Neom, to the length of f{’” and fb”,
ie., Lﬁm and Lf2zm, respectively, i.e., a; = Ncom/Lﬁm and
ay = Ncom/Lfgn. Based on the value of (a1, o), there are
four different relationship between f{m and fg":

(1) If oy = g = 1, then f{’" is similar to fb”;
(2) a; ~ 1 and a; >> ag, then ™ is contained by fi";
(3) @z ~ 1 and ay >> ay, then fi" is contained by fo";

(4) Neither a; nor ay is close to 1, then fP™ and fi" are
not similar.

The utilization of these relationship in discovery and the
early discard process is discussed in Section IV-C in detail.

2Base-name is the name of the file, without its directory information.

B. 1-D Histogram Instance Fingerprint

A change set sometimes contains thousands of file features,
as a result, the base-name instance fingerprint, which consists
of base-names of all the file features, is still not sufficiently
compact for early discard. In addition, different change sets
may share many common base-names that are not from core
parts of the system changes (e.g., a large number of common
temporary files created as part of the software installation by
yum), which may cause the base-name fingerprint to be no
longer distinguishable. Furthermore, more learning algorithms
can be applied if a base name fingerprint is transformed
into a quantified fingerprint. For these reasons, we propose a
quantiflgd fingerprint, the 1-D histogram instance fingerprint,
ie., f*7.

The idea of the I-D histogram instance fingerprint is
inspired by the image processing technique. In image process-
ing and pattern recognition, a pixel-based image is typically
represented by a histogram feature, e.g., local binary pattern,
color histogram, etc, which is capable of capturing the main
attributes of the image with just few numbers, and can be
efficiently processed by many learning algorithms. Similarly,
we apply the histogram feature in our discovery of system
changes. The idea is to build histogram using some hashing
functions to convert the strings of base-names to integers in
bin range. More specifically, in our implementation, the f'”
is generated in the following way:

Step 1: For each base-name in fb”, we calculate the ASCII
sum of its characters. In our implementation, we select the
ASCII sum as the hash function to convert strings to integers,
because ASCII sum is simple and fast. Experimental results
have shown that ASCII sum is a reasonable choice. In future,
we plan to evaluate the use of different hash functions.

Step 2: Each base-name string has been converted to an integer
after step 1, so now we have several numbers of integers. We
generate a counting histogram of these integers. The range of
each bin of the histogram is determined by the number of bins,
i.e., Np;ns that is selected. Based on our observations, most
of these ASCII sum integers are ranged in [200, 2000], thus,
given the Ny;,s, the bin range in our case is designed as (0,
200, 200 + 2000 200 200 + 2% 2]800 2010 , 2000 - M
2000, o). In "the countmg h1stogram the number of ASCII
sum integers that falls in each bin, i.e., C;, i = 1,2, ... Npins
is calculated;

Step 3: Finally we normalize the histogram by calculating

Nyins
crerm = C; /) >, Ci, i = 1,2,...Npins. Hence we have
i=1
Nbins
Cp™™ = 1. The histogram is normalized so that the

i=1
discovery result will not be affected by the length of the base-
name list.

The length of the 1-D histogram instance fingerprint is
Nypins, which in general is much smaller than the length of f bn
Figure 5 shows the generation process of the 1-D histogram
instance fingerprint.

As the 1-D histogram instance fingerprint is a quantified
and highly condensed feature vector, many learning algorithms
and metrics can be directly applied on it. For example, the
similarity of two 1-D histogram instance fingerprints can be

File features

Base-name instance fingerprint:

Extract . .
X —» [tomcat, tomcat.service, logs, tomcat-users.xml, catalina.out, conf...]

base-names

Quantified list of the fingerprint:

Hash: ASCIl sum — 50 "2 147 437, 1638, 1219, 422...]

string -> integer

1D histogram instance fingerprint (without normalization):
[0,0,2,1,0,0,1,1,1,0, 0]
422
437 648 1219 1447 1638
vy 2P 2R]
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Normalization

1D histogram instance fingerprint (normalized):
[0, 0,0.33,0.17, 0, 0, 0.17, 0.17, 0.17, 0, O]

Fig. 5. The flow chart of the 1-D histogram instance fingerprint generation.

Repository

All the instancé
fingerprints f;

Early Discard Filter
Threshold 6

Identif
the que @

Query instance
fingerprint f,

Repository
Candidate Set

Tomcat Installation

Discard Set
Httpd

MangoDB

Hadoop

Input to the following layers for further process

Fig. 6. The discovery process by using fingerprints.

measured by a distance metric. The smaller the distance is,
the more similar the fingerprints are. There are various of
distance metrics. In this work, we use the simple yet effective
Euclidean distance. Namely, given two 1-D histogram instance
fingerprints, 1 and f37, the distance d; » between them is
calculated as dy o = ||ftP — fiP]|s. As both f1P and fiP
are normalized, the maximal value of the distance is v/2. We
further normalize d; o as the percentage of the maximal value,

fen dy = WP=8"ll 4 100%, f ' f maki
Lo, U122 = \/5 0, IOr convenience Or ma lng

comparisons.

C. Discovery Process with Fingerprints

In this section, we specifically present how the early discard
and the discovery process work with designed fingerprints. We
first study the discovery by the base-name instance fingerprint.
The fingerprint of the query change set is first generated as f;’”.
Then fé’” is input into the early discard filter and compared
with all the base-name instance fingerprints £, i = 1,2,3...,
in the repository. Based on the results of the instance fin-
gerprint comparison and the designed “filtering policy”, the
system change events, i.e., the families, in the repository are
divided into two sets, a candidate set and a discard set. A
candidate set includes families that have at least one instance
fingerprint that passes the filter (i.e., satisfies the “filtering
policy”), while families in the discard set have none of their
instance fingerprints satisfy the “filtering policy”. The “filtering

policy” of the early discard layer in this case is designed
based on the similarity score introduced in Section I'V-A, and
a similarity threshold, §°" < 1. For all the instance fingerprint
pair (f2", f*™) and corresponding similarity score (0g,), if
both oy > 6" and «; > 6°, then fib" is similar to fé’” and
fib” passes the filter, otherwise it will be filtered out. Families
in the candidate set is considered similar to the query sample
by the early discard layer, and provide clue of identifying the
query. For example, if the “Tomcat installation” family is in
the candidate set, then the query sample may be the changes
of Tomcat installation. These families is further processed by
the following layers in the discovery system. Figure 6 shows
this process of discovery.

The process of discovery by the 1-D histogram instance
fingerprint is similar to that of the base-name instance fin-
gerprint, but with a different “filtering policy”. The “filtering
policy” in this case is defined based on the distance metric.
The distance between the query 1-D histogram fingerprint fqlD
and the 1-D histogram instance fingerprint in the repository,
filD , © =1,2,3..., is calculated, and denoted as d, ;, which
has been introduced in Section IV-B. A distance threshold,
6'P < 1 is also defined, recalling that the distance has been
normalized by the maximal value. If d,; < 67, then f}P
is considered similar to fqlD on the early discard layer and
passes the filter, otherwise it does not satisfy the “filtering
policy” and will be filtered out. The rest process of the 1-D
histogram instance fingerprint is the same as that of the base-
name instance fingerprint.

V. EXPERIMENTAL RESULTS

In this section, we first present how the repository is
constructed and how the test benchmark data is collected. Then
we evaluate results of the “discovery by example” approach
using both the base-name fingerprint and the 1-D histogram
fingerprint. Finally, a case study of leveraging ‘“discovery
by example” technique in real-time streaming monitoring is
discussed.

A. Data Collection and the Test Benchmark

We generate the example repository for our experiments by
randomly selecting 161 software packages from the Linux yum
repository, installing them on Amazon Web Service (AWS)
EC2 Fedora-19 Micro instance by using the yum utility, and
recording the system changes during each of the installation
process. In installation, software package dependencies are
resolved and installed as well. Different software packages
usually share common dependencies, so some dependencies
that are needed by the current software may have already been
installed during previous installations of other software. Thus,
when we install a batch of software, changing the order of the
software package installation affects files added or modified
into each change set. Furthermore, there might be changes
made from other unrelated activities happening in parallel of
the installation. All these conditions introduce variations in the
change set corresponding to a software installation. In order
to capture this variation in our experiments, each software is
installed three different times when we generate the repository,
with various dependencies and unrelated activities during each
of them. Then we randomly select 89 software from the 161

available packages in repository to create our test benchmark.
We install each of them once and record the change set.

We use the percentage of false discard and the average
percentage of total discard to evaluate the accuracy and effi-
ciency of our approach. The percentage of false discard, i.e.,ny
is defined as the percentage of 89 tests whose target candidates
in the repository are put in the discard set. As these 89 test
software are selected from 161 software in repository, each of
them has one target candidate. High 7y represents low discard
accuracy. On the other hand, an over-permissive discard filter
could include too many candidates in the candidate set, and
thus provide low value for early discard. Therefore, we define
the average percentage of total discard, i.e., n; to measure the
efficacy of the filter. For each test 4, the percentage of total
discard, i.e., (3; is calculated as the size of the discard set, i.e.,
SP divided by the total number of the events in the repository
(in our case equals to 161), i.e., 3; = SZ-D/161 * 100%. Then

8

9
n¢ is computed as the average value of §;, i.e. iy = > (3;/89.

i=1
In addition, we also measure the size of the repository and
the average processing time of the test, to help evaluate the
efficiency of our approach.

B. Early Discard with Base-name Fingerprint

We evaluate the performance of early discard on our de-
signed test benchmark, using base-name instance fingerprint,
with various similarity thresholds 0™. The results of the
percentage of false discard, the average percentage of total
discard and the average processing time of the test are shown
in Figure 7(a) to Figure 7(c), respectively. From Figure 7(a)
and Figure 7(b) we can see that when 6°™ increases, both the
percentage of false discard and the average percentage of total
discard increase. This is as expected, as a larger similarity
threshold requires candidates to have more matching base-
names to pass the filter, and as a result, more candidates are
discarded. Figure 7(c) shows that the average processing time
of the test keeps around 33 milliseconds, and does not vary
much with different °. While determining a good 6", a
low percentage of false discard is first required, and then a
high average percentage of total discard is expected, as a very
large candidate set after the filter leads to too many candidates
being sent to the next layer, and therefore causes low efficiency.
If an tolerable percentage of false discard is 10%, then both
6" = 50% and 6*" = 60% satisfy this requirement from
the figure, and with the average percentage of total discard
as 55.3% and 74.5%, respectively. The similarity threshold,
furthermore, can be automatically trained and updated, based
on different accuracy and performance requirements, following
the updates of the repository, so that the threshold is able to
be always well tuned, to suit for any kind of cases in general.
Details will be discussed in our future work.

In addition, we measure the size of the repository (161
software with each installed by three times, thus, in total
483 samples). The storage size of using base-name instance
fingerprint is 11MB, which is 28 times smaller than saving all
the change sets. Overall, the results show that when applying
the base-name fingerprint, an early discard filter can discard
more than half of the total candidates, while at the same time
guaranteeing that the probability of the false discard is less

% of False Discard Via Similarity Threshold
by Base-name Instance Fingerprint

Avg. % of Total Discard Via Similarity Threshold
by Base—name Instance Fingerprint

[}
o

Avg. Query Time Via Similarity Threshold
by Base—name Instance Fingerprint

Percentage of False Discard (%)

50% 60% 70% 80%

Similarity Threshold

(a)

90%

% of False Discard Via Distance Threshold
by 1-D Histogram Instance Fingerprint

@
(=3

Avg. Percentage of Total Discard (%,

al
o

N
o

n
o

Percentage of False Discard (%)
s S

Avg. Percentage of Total Discard (%)

o

2% 5% 6% 7% 8%
Distance Threshold

(@

Fig. 7.

10% 0 2% 5% 6%

100 —
w
\E’SO
80 £
540
c
60 ‘D
1]
830
o
40 a
>20
()
8
20
510
>
<
0 50% 60% 70% 80% 90% 0 50% 60% 70% 80% 90%
Similarity Threshold Similarity Threshold
(b) (©
Avg. % of Total Discard Via Distance Threshold At;’91 Qge'_r'y Time Vila DistancE_ThreShold
by 1-D Histogram Instance Fingerprint 10 y 1-D Histogram Instance Fingerprint
)
E
g
[y
2
g 6
Q
(5]
<
o 4
>
(]
=1
g 2
[
>
<
7% 8% 10% 0 2% 5% 6% 7% 8% 10%
Distance Threshold Distance Threshold
®

The early discard performance by using the base-name instance fingerprint (a, b, ¢), via different similarity thresholds, and the 1-D histogram instance

fingerprint (d, e, f), via different distance thresholds, (a) and (d) are results of the percentage of false discard. (b) and (e) are results of the average percentage
of total discard, (c) and (f) are the average query processing time. The results are measured based on 89 test software installations.

than 10%. Also, the processing speed is fast and the storage
size of the fingerprint is small.

C. Early Discard with 1-D Histogram Fingerprint

While using the 1-D histogram fingerprint to represent the
change set, the histogram bin number (i.e., the dimension of
the fingerprint) not only affects the accuracy of discovery, but
also affects the size of repository and the query processing
speed. Hence, we test the 1-D histogram fingerprint approach
with different selections of the histogram bin number. Figure 8
shows the results of the percentage of false discard (Fig. 8(a)),
the average percentage of total discard (Fig. 8(b)), and the
average query processing time (Fig. 8(c)) of the 89 software
installation tests, at a fixed distance threshold 0P = 5%. The
size of the repository of storing 483 1-D histogram instance
fingerprints is shown in Figure 8(d).

Results show that as the number of bins is increased, both
the percentage of false discard and the average percentage
of total discard first increase rapidly, and then saturate after
certain points. The increase of the average percentage of total
discard almost resembles a step function, thus, a very small
number of bins can achieve fairly high average percentage of
total discard, e.g., using 10 bins leads to an average percentage
of total discard larger than 95%. In addition, both the average
query processing time and the size of the storage of the 1-
D histogram instance fingerprints increase accompanied with
the growth of the histogram bin number. The average query
processing time increases slowly, thus, is not sensitive to the
number of bins. However, the size of the storage increases

% of False Discard (%) Avg. % of Total Discard (%)

100
20 99 (’/\
98|
97,

96

200 400 600 80_0 1200 0 200 400 600 80p
Number of Bins Number of Bins

(a) (b)
Size of Storage (kB)

1000 1000 1200

Avg. Query Processing Time (ms)
20,

6000

15 5000)

-

4000

3000

2000

1000

0
00 200 400 600 800 1000 1200 0

Number of Bins

200 400 600 80_0
Number of Bins

(c) (d)

1000 1200

Fig. 8. The early discard performance by using the 1-D histogram instance
fingerprint, via different number of bins used in histogram generation. (a) is
the percentage of false discard, (b) is the average percentage of total discard,
(c) is the average query processing time and (d) is the size of the storage
of all the fingerprints. The results are measured based on 89 test software
installations. The distance threshold used here is 5%.

notably at a linear trend with a steep slope. Overall from
Figure 8, we conclude that neither a small nor a large value
of the bin number is the good choice. If the number of bins is

Avg. % of Total Discard via % of False Discard
100

90

—Base-name
80r —1-D Histogram

70

60r

Avg. Percentage of Total Discard (%)

500 20 40 60 8
Percentage of False Discard (%)

100

Fig. 9. The curve of the average percentage of the total discard via
the percentage of false discard, by using base-name and 1-D histogram
fingerprints, respectively.

too small and close to 0, it leads to a low average percentage
of total discard that is close to 0 and the system is useless;
if the number of bins is large, the average percentage of total
discard is not improved much, while the percentage of false
discard, the average query processing time and the size of the
storage required are all increased. Based on observations, a
good choice of the bin number is estimated to be between
10-50.

With the selected bin number as 20, then we test the
performance under different selections of the distance thresh-
old 8'P. We again query the fingerprints of 89 test software
in our test benchmark and measure the percentage of false
discard, the average percentage of the total discard, and the
average processing time of the test, shown in Figure 7(d)
to Figure 7(f). Figure 7(d) and Figure 7(e) show that when
6P increases, both the percentage of false discard and the
average percentage of the total discard decrease. This is as
expected, as a larger distance threshold allows more candidates
that have larger distances to the query fingerprint to pass the
filter, and as a result, leads to fewer candidates being discarded.
Figure 7(f) shows that the average query processing time by
using 1-D histogram fingerprint keeps around 6.7 milliseconds,
and does not vary much with different §*©. Similar to the
similarity threshold, the distance threshold can be trained and
updated automatically. In addition, the size of the repository
by using the 1-D histogram fingerprint is 88 KB, which is
3500 times smaller than saving all the change sets. Overall, the
results show that when applying the 1-D histogram fingerprint,
an early discard filter can discard more than 90% of the
total candidates while at the same time guaranteeing that the
probability of the false discard is less than 5%, which is fairly
efficient. Also the processing speed is very fast and the storage
size of the fingerprint is tiny.

Finally, we compare the performance of the base-name
fingerprint with that of the 1-D histogram fingerprint. Figure 9
presents the curve of the average percentage of total discard
versus the percentage of false discard for both types of
fingerprints. For an early discard filter it is desirable to have
small percentage of false discard and large average percentage
of total discard. From Figure 9 we can see that the performance
of using 1-D histogram fingerprint outperforms that of using
the base-name fingerprint. For example, when we keep the
percentage of false discard lower than 7% in both cases, using
1-D histogram fingerprint provides the average percentage of

Avg. % of Total Discard via % of False Discard
Partial Example, Base-name Fingerprint

—
o
(=}

90
80r
70r
60

20%
5o 40%
40t 60%
—80%

30 —100%

Avg. Percentage of Total Discard (%)

200 20 40 60 8
Percentage of False Discard (%)

(a)

Avg. % of Total Discard via % of False Discard
Partial Example, 1-D Histogram Fingerprint

100

100

.

80r
70r

60

20%
507 40%
40H 60%
—80%
—100%

301
200 20 40 60 80 100
Percentage of False Discard (%)

(b)

Avg. Percentage of Total Discard (%)

Fig. 10. The curve of the average percentage of the total discard, via the
percentage of false discard, under different partial values (20% -100%). (a) is
of the base-name fingerprint and (b) is of the 1-D histogram fingerprint.

total discard up to 97.3%, while that of using base-name
fingerprint is only up to 55.3%, which shows that using 1-D
histogram fingerprint is much more efficient. Furthermore, 1-D
histogram fingerprint is more condensed than the base-name
fingerprint, with the size of storage of 483 instance fingerprints
as 88KB versus 11MB, which is around 125 times saving. The
query processing speed of using 1-D histogram fingerprint is
also 5 times faster than using the base-name fingerprint (6.7
ms versus 33 ms). Thus, to sum up, using 1-D histogram
fingerprint in discovery achieves both higher efficiency and
higher accuracy.

D. A Case Study: Discovery by Example in Real-Time Stream-
ing Monitoring

Today, we have islands of information regarding system
instances, vulnerabilities in databases like National Vulnera-
bility Database, and fixes to these vulnerabilities in providers’
repositories, etc. If we close the loop between these islands,
we could then make running infrastructure more secure. As a
part of this closed loop, we need to have the capability to block
unwanted changes propagating through running infrastructure.
This requires us to monitor changes happening in systems in
real time, detect and stop anomalous system changes. In order
to do this, we need to be capable of discovering system changes
and events with only partial information of the system changes,
as it might be too late to avoid vulnerabilities and malicious
changes if we wait for the anomalous changes being completed
and the full change set being created.

In this case study, we evaluate the performance of our pro-
posed “discovery by example” technique in real-time streaming
monitoring. More specifically, we want to see that given partial
change sets for query, whether our “discovery by example”
approach is still able to efficiently search for similar candidates
throughout the repository and identify the query example. We
apply both the base-name instance fingerprint and the 1-D
histogram instance fingerprint representations, and compare
their performance. The query examples in this case are partial
change sets® of 89 software installations in our test benchmark.
We evaluate the results of different partial values, from 20%
to 100%. 20% means that we only have a small part (20%) of
the full change set, and 100% represents the full change set.

Figure 10(a) and Figure 10(b) present the curves of the
average percentage of total discard versus the percentage of
false discard, with each curve representing a partial value
(20% -100%), by using the base-name fingerprint and the 1-D
histogram fingerprint respectively. The figures show that when
the partial value is small (e.g., 20%), neither two types of
fingerprints provide good discovery results. This is as expected,
as only having such tiny information is not sufficient for
identifying the example. When the partial value increases, the
performance of discovery is getting improved.

The results for the base-name fingerprint are already sat-
isfying and fairly close to the results of discovery by using
the full query change set, when the partial value is increased
above to 40%. This is because that while using the base-
name fingerprint, the similarity score is determined based on
the percentage of the matching base-names, therefore, the
discovery result is not very sensitive to the partial value that
is used in query, as long as the partial value is not too
tiny. Having a large partial value, however, sometimes may
include more noise that affects the similarity score, and thus
may even lead to decrease of the performance. On the other
hand, for the 1-D histogram fingerprint, the performance keeps
improving as the partial value is increased, which shows that
the 1-D histogram fingerprint is more sensitive to the partial
value. Finally, comparing these two figures, we see that when
the partial value is large (80% and 100%), 1-D histogram
fingerprint has a better discovery performance, while the base-
name fingerprint outperforms the 1-D histogram fingerprint
when the partial value is small (40% and 60%). Therefore, in
the real-time streaming monitoring, applying these two types of
fingerprints in a complementary way may improve the overall
performance: when the query is a small piece of the full change
set, the base-name fingerprint is used, and when the partial
value is getting large, we switch to apply the 1-D histogram
fingerprint.

Overall, the results show that our “discovery by example”
approach can still be highly efficient and accurate by using
only partial query samples. This demonstrates the robustness
of the proposed approach. The results also present the potential
of our approach being applied in a real-time streaming system
monitoring context.

3Features in the partial change set are not randomly picked out from the
original full change set, instead, they are continuous in the time sequence, and
together form as a piece of the original full change set. They are recorded
during a partial time period of the full application installation, namely, they
are generated in a real-time streaming way.

VI. CONCLUSION AND FUTURE WORK

In this paper we have proposed applying the “discovery by
example” approach to detect and identify changes to system
instances in the cloud. We introduced a filter cascade discovery
structure and specifically studied the early discard filter. We
have also proposed two types of highly condensed fingerprints
(the base-name fingerprint and the I-D histogram fingerprint)
to represent the system changes in early discard. Experimental
results show that by applying our fingerprints, the early discard
filter can discard up to 90% of unrelated candidates while
guaranteeing that the probability of the false discard is less
than 5%. In addition, the processing speed is less than 10
milliseconds for each query and the storage space required of
saving examples is reduced by up to 3500 times. Further results
in the case study show that our proposed approach can still
keep high efficiency and accuracy while the query samples are
partial, and thus is suitable for real-time streaming monitoring.
In particular, we have shown that our condensed 1-D histogram
can perform better for full fingerprints, while the base-name
fingerprints are more suitable for realtime, streaming detection.
Overall, our approach can automatically detect and identify
system changes from examples. It does not require any specific
knowledge or manual processing. It is distortion resistant, fast,
storage efficient, and can be used to identify various forms of
system changes.

Our ongoing work includes the following. First, both
fingerprints that we have designed so far take only base-names
of file features into consideration. We believe that a fingerprint
that takes into account other file attributes may have more
discriminating power, which would be suitable for filters after
the early discard. To incorporate additional attributes, multi-
dimensional histogram fingerprints can be constructed, with
each dimension representing one type of metadata. Also, while
current work focuses on file features, we believe this approach
can easily accommodate other features, such as processes,
configuration, connections, and their relationship. Though the
processing speed and the storage efficiency may decrease by
taking all of them into account, it is still suitable for filters
after the early discard, as which are supposed to take more
details into account, and be more tolerable for the processing
speed and the storage size than the early discard filter.

Second, we are testing the effectiveness of our approach on
other use cases besides discovering software installations, such
as discovering software updates and system reconfigurations.
For example, our early results show that the “discovery by
example” approach is capable of distinguishing the same
software but with different versions, and as a result, software
updates can be accurately discovered.

Third, in this work, detection of similar fingerprints and
identification of the query are based on comparing the query
fingerprint with all instance fingerprints in the repository. We
would like to explore whether we could synthesize a more effi-
cient family fingerprint rather than a simple set of the instance
fingerprints, so the processing speed and the storage efficiency
can be further improved. In future, we plan to explore more
machine learning algorithms such as SVM, decision trees and
neural networks for the fingerprint classification and detection.

[1]

[2]
[3]
[4]
[5]

[6]

[7]

[8]

[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

REFERENCES

Endpoint manager relevance language guide.
http://pic.dhe.ibm.com/infocenter/tivihelp/v26r1/topic/com.ibm.tem.doc
_8.2/Relevance_Guide_PDF.pdf.

National vulnerability database. http://nvd.nist.gov/.
Open source software discovery. http://ossdiscovery.sourceforge.net.
Openioc. http://www.openioc.org/.

Search by image. http://www.google.com/insidesearch/features/images/
searchbyimage.html.

Serge Belongie, Jitendra Malik, and Jan Puzicha. Shape matching and
object recognition using shape contexts. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 24(4):509-522, 2002.

Peter Bodik, Moises Goldszmidt, Armando Fox, Dawn B Woodard, and
Hans Andersen. Fingerprinting the datacenter: automated classification
of performance crises. In Proceedings of the 5th European conference
on Computer systems, pages 111-124. ACM, 2010.

Ira Cohen, Steve Zhang, Moises Goldszmidt, Julie Symons, Terence
Kelly, and Armando Fox. Capturing, indexing, clustering, and retrieving
system history. In ACM SIGOPS Operating Systems Review, volume 39,
pages 105-118. ACM, 2005.

Marios D Dikaiakos, Asterios Katsifodimos, and George Pallis. Min-
ersoft: Software retrieval in grid and cloud computing infrastructures.
ACM Transactions on Internet Technology (TOIT), 12(1):2, 2012.

Geoffrey A. Fowler. One-minute review: Amazons flow image
recognition beats barcode scans. The Wall Street Journal,
http://blogs.wsj.com/digits/2014/02/05/one-minute-review-amazons-
flow-image-recognition-beats-barcode-scans/?mod=WSJBlog, 2014.
Larry Huston, Rahul Sukthankar, Rajiv Wickremesinghe, Mahadev
Satyanarayanan, Gregory R Ganger, Erik Riedel, and Anastassia Aila-
maki. Diamond: A storage architecture for early discard in interactive
search. In FAST, volume 4, pages 73-86, 2004.

Frederick Jelinek. Statistical methods for speech recognition. MIT
press, 1997.

Joshua Redstone, Michael M Swift, and Brian N Bershad. Using
computers to diagnose computer problems. In HotOS, pages 86-91,
2003.

Yong Rui, Thomas S Huang, and Shih-Fu Chang. Image retrieval:
Current techniques, promising directions, and open issues. Journal of
visual communication and image representation, 10(1):39-62, 1999.

Mahadev Satyanarayanan, Wolfgang Richter, Glenn Ammons, Jan
Harkes, and Adam Goode. The case for content search of vm clouds.
In Proceedings of the 2010 IEEE 34th Annual Computer Software and
Applications Conference Workshops, pages 382-387, 2010.

Steve Schwartz. Organizing and Editing Your Photos with Picasa:
Visual QuickProject Guide. Peachpit Press, 2005.

Avery Wang. The shazam music recognition service. Communications
of the ACM, 49(8):44-48, 2006.

Wenyi Zhao, Rama Chellappa, P Jonathon Phillips, and Azriel Rosen-
feld. Face recognition: A literature survey. ACM Computing Surveys
(CSUR), 35(4):399-458, 2003.

